
J.A. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2009, LNCS 5612, pp. 133–140, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Pull and Push: Proximity-Aware User Interface for
Navigating in 3D Space Using a Handheld Camera

Mingming Fan and Yuanchun Shi

Department of Computer Science &Technology, Tsinghua University, P.R. China
fmmbupt@yahoo.com.cn, shiyc@tsinghua.edu.cn

Abstract. In the 3D object controlling or virtual space wandering tasks, it is
necessary to provide the efficient zoom operation. The common method is
using the combination of the mouse and keyboard. This method requires users
familiar with the operation which needs much time to practice. This paper
presents two methods to recognize the zoom operation by sensing users’ pull
and push movement. People only need to hold a camera in hand and when they
pull or push hands, our approach will sense the proximity and translate it into
the zoom operation in the tasks. By user studies, we have compared different
methods’ correct rate and analyzed the factors which will affect the approach’s
performance. The results show that our methods are real-time and high
accurate.

1 Introduction

Many 3D interaction tasks need the zoom operation. Suppose that if we want to
wander in the 3D campus, we may need to go ahead to watch the landscapes. In order
to satisfy this requirement, we can use the mouse to control the moving direction and
the up arrow key to move ahead. The disadvantages of the method are as following.
First, the operation needs relatively complex combinations of keyboard shortcuts with
mouse movement and clicks. This usually operates with two hands. Second, it gives a
low level of naturalness and is not a good choice for the children or people who are
not familiar with the keyboard and mouse operations. In order to crack the above two
disadvantages, we propose a method that users could simply pull or push their hands
to move in or out by holding the camera. When they want to go ahead, they just need
push their hands forward. When they would like to go back, they just need pull their
hands back. Our approach needs only people’s natural movement and almost need no
study. Besides the naturalness, the operation only needs one hand and people may use
the other hand for other operations.

Some researches [2, 5, 6] have done the familiar studies, such as the Harrison and
Dey [2] try to recognize the people proximity by the camera in the computer.
However, during their mode, the camera is still and the approach is not proper for the
2D or 3D interaction tasks such as the object control or the virtual space navigation.
IsseU [5] is similar to our approach. IseeU tries to calculate the change in the standard
deviation of the positions of feature points, which are selected in the image captured
by the camera, and transform it into a zooming message. However, we analyze that it
is not enough to give a high accuracy.

134 M. Fan and Y. Shi

After having studied the previous works, we first give two methods to recognize
the zooming message. After that we test the accuracy rates of them and analyze the
factors which have an effect on the accuracy. Then by taking more factors into
consideration, such as how to support large distance zoom, we modify the methods to
make them more efficient.

2 Framework of the Algorithm

The handheld camera is just a tool for interaction. Because the camera is hold steadily
in user’s hand, the camera’s movement will reflect the hand’s movement. In order to
detect the camera’s movement, first, we detect some corner points in the image
frames captured by the handheld camera, then by analyzing the geometric characters
of the corner points’ positions, we try to decide whether the movement is zooming or
not. During the following part, we propose two methods to detect the zoom and then
compare them with each other to see which one is better.

Corner points
detecting

Corner points
tracking

Zooming
detected

Controlling
Application

Fig. 1. The whole framework of processing

3 Corner Points Detecting and Tracking

Corner-like points [4] which are corners, with big eigenvalues in the image, are easy
to find on incoming frames and are relatively stable while being tracked. Tracking the
points means finding the new positions of the corner points, which appeared in the
last frame, in the frames. Our approach tracks the feature points by implementing
sparse iterative version of Lucas-Kanade optical flow in pyramids [1] .

Fig. 2. The green points are the corner points

 Pull and Push: Proximity-Aware User Interface for Navigating 135

4 Zoom Detecting Algorithms

In this part, we will discuss two algorithms to detect the zoom in detail and then
compare their performance.

4.1 Algorithm One: Sensing the Distance

As the figure3 shows, A, B, C, D are positions of the corner points in the last frame,
the A’, B’, C’ D’ are the positions in the frame. The average distance between the
corner points and their centers becomes farther when the camera zooms in, since the
distance between the camera and background are shortened.

According the above analysis, first, we calculate the positions of the corner points
in the last and now frames. Then, calculate the average distances among them and
their centers. Finally, calculate the rate of the new distance and old distance. If the
rate is over 1.0, it means that the camera pulls back. If the rate is less 1.0, it means
that the camera pushes forward. In the real experiment, due to the hand’s jitter, the
camera may have the slight movement. In order to reduce the jitter’s interference, we
set a threshold to instead of the above number 1.0.

Fig. 3. Corner points’ positions before and after the camera zoom in. o and o’ are the centers of
the old corner points in the last frame and new corner points in now frame.

4.2 Algorithm Two: Sensing the Change of the Area

As the figure 3 shows, the corner points form a polygon ABCDE. After the zoom in

operation, the polygon becomes the ' ' ' ' 'A B C D E ，the area of the polygon ABCDE
changes to be larger. Through sensing the change of the area, we can decide whether a
zoom in or out happens.

4.3 The Accuracy of the Two Algorithms

Participants
Seven participants, six male and one female, take part in the test. They use a
webcamera with frame rate 30 fps(frames per second) and a pentium 4 PC with the

136 M. Fan and Y. Shi

main frequency 3.2GHz. Each of them takes the experiment for about five minutes.
Before the test, they are given no more than five minutes to be familiar with the
camera.

Experiment
We have rendered a 3D virtual space with DirectX 3D(see figure4). People are asked
to use the camera to go ahead or back in the virtual space. We count the total
decisions and the right decisions, then calculate the accuracy rate. (We ask the testers
to do zoom in operation, then we count the total judgment and the actural zoom in
times).

Fig. 4. The left one is the last image. When users push the camera forward, our view goes
forward and the house becomes bigger than ever.

Accuracy Rate
Participants are asked to do the zoom in and out movements to test two algorithms’
accuracy rates.

According to the Fitts law [3], the distance between the camera and positions of the
corner points in the real world will have an effect on our algorithms. So in order to
test how the distance factor affects our algorithms’ performances, we do the
experiments at different distances, such as 0.6m, 2~2.5m, 5m.

We calculate the seven participants’ results and give the average accuracy rates at
different distances in figure 5.

Discussion
From the figure5, we can conclude that:

• The average accuracy rate of the algorithm2, which senses the proximity by
calculating the changes of areas, is higher than the algorithm1, which detects the
zoom by calculating the changes of distances.

• As the distance between the camera and the corner points’ real world positions
increase, the accuracy rate declines rapidly. At the distance about five meters, the
accuracy rate of algorithm one has been below 50% and the accuracy rate of
algorithm two is almost equal 50%.

• The zoom detecting algorithms are totally sensitive about the distance. Within the
five meters, the algorithm can keep the accuracy rate above 50%. Within the

 Pull and Push: Proximity-Aware User Interface for Navigating 137

Fig. 5. The average accuracy rates of seven participants’ results

distance 1~2m, the two algorithms can keep the accuracy rate over 80%. This
results guide us that our hands had better push or pull the camera in a direction in
which there are some objects with in 1~2m.

• The experiments are taken by seven participants who only use the camera to
operate less than five minutes. The results show that they can operate the zooming
easily and need less time to practice.

4.4 Large Distance Zooming Support

Using a Finite State Machine
From the questionnaire, they reflect that the approach is not suitable for moving a
long distance at one time. If they want to go ahead in the virtual space for a long time,
they must keep pushing or pulling the camera for a long time. This is impossible due
to users’ moving space is limited. In order to crack this hard nut, we give the strategy
that we first detect the movement. If we continuous detect the zoom in movement for
two times, then we simply think that users want to zoom in. In this situation, we
output the zoom in. if users want to stop zooming in, they can pull back the camera. If
our approach detects the zoom out movement for two times, we think that users want
to pull back. The whole procedure can be described as a finite state machine
(FSM)(Figure 6). During the zoom in / out state, our approach will output the “zoom
in/out” decision. Suppose the current state is “zoom in”, and current judgment of the
algorithm is “zoom out”, then the counter Count1 will add by one, then we examine
whether Count1 is two or not. If the count1 is two, then the state will change to “zoom
out” and the output is “zoom out”. But if the count1 is not two, then the state will still
be “zoom in” and the output is “zoom in”. if the current state is “zoom in” and the
current judgment is “zoom in”, our approach will output “zoom in” and set the count1
as zero.

The reason why we use the counters when the state is changing is to make our
algorithm stable. Since the camera is held in people’s hand and the hand will be

138 M. Fan and Y. Shi

Fig. 6. The finite state machine of zoom in and zoom out

naturally jitter while suspending in the air. And this jitter maybe causes some zoom in
or out motion. If the approach does not use the state machine or two counters, then
only a slight noise will cause false decisions.

Experiment for Testing the Effect of Finite State Machine
Participants and the hardware conditions are the same as the above experiment. We
have done two zoom detecting algorithms, one uses the finite state machine and the
other does not. All participants have required to do zoom in and out movements
alternatively for about five minutes. Each have done the experiments twice, one time
is without the finite machine and the other time with the finite machine. The average
distance between the corner points’ positions and users’ hands’ positions is about one
meter which is good for our algorithm to work. The average accuracy rates are
calculated.

Fig. 7. The accuracy rates of the algorithms. One is 0.93, the other is 0.95. The result shows
that the FSM improves the algorithm’s performance.

After the experiments, participants give us some valuable feedbacks, based on
which we conclude the following

• With the finite state machine, they can continuously zoom in or out. While they use
for the object controlling, they can magnify or reduce the size of objects. While

Zoom in
Count2 = 0

Zoom out
Count1 = 0

Zoom in
Count1 = 0

Count1= 2

Zoom out
Count1 ++
&& Count1 !=2

Zoom out
Count2 = 0

Count2= 2

Zoom in
Count2 ++
&& Count2 !=
2

 Pull and Push: Proximity-Aware User Interface for Navigating 139

using in the virtual space wandering, they can continuously go ahead or back in the
scene.

• They can switch between the zoom in and zoom out movement with higher
accuracy rate.

• Before the hand’s motion state changes to the other one, the counter must count to
two. Since the frame rate is 30fps, then the delay time is 6.6 milliseconds which is
almost real-time to our eyes. By using the finite state machine and the counter, the
accuracy rate is improved.

5 Applications

As we have claimed that the given proximity-aware algorithm can be used in the
object controlling and the virtual space navigation. In the object controlling task,
people can magnify or reduce the virtual object by pushing or pulling the camera. The
application is shown in Figure8. In the virtual space navigating tasks, the algorithm
can be used for going forward or back in the scene which is especially useful for the
games(Figure4).

Fig. 8. The left one is the former image of a cube, when the user pushes the camera forward,
the cube’s size will increase as is shown in the right picture

6 Conclusions

In this paper, we have proposed and compared two proximity-aware algorithms. From
the experiment’s results, we conclude that the algorithm two has a better performance.
In order to support the large distance zoom and improve the accuracy rate, we take in
a finite state machine. Comparing to the traditional mouse and keyboard operation,
our methods are much more natural and easier to learn. Our approaches are real-time
and have high accuracy rate. Our methods can be used in the object control and
virtual space navigating tasks to fulfill the zoom function.

Acknowledgements

Specialized Research Fund for the Doctorial Program of Higher Education, China,
No.20050003048 and this research is also supported by the Nokia Research Center.

140 M. Fan and Y. Shi

References

1. Bouguet, J.V.: Pyramidal implementation of the Lucas Kanade Feature Tracker Description
of the algorithm. Intel. Corporation Microprocessor Research Labs (1999)

2. Harrison, C., Anind, K.D.: Lean and Zoom: Proximity-Aware UserInterface and Content
Magnification. In: Proc. CHI, pp. 507–510 (2008)

3. ISO. Ergonomic requirements for office work with visual display terminals (VDTs) -
Requirements for nonkeyboard input devices. ISO 9241-9 (2000)

4. Shi, J., Tomasi, C.: Good features to track. In: Proc. IEEE Comput. Soc. Conf. Comput.
Vision and Pattern Recogn., pp. 593–600 (1994)

5. Sohn, M., Lee, G.: ISeeU: camera-based User interface for a handheld computer. In: ACM
MobilCHI 2005, pp. 299–302 (2005)

6. Wang, J., Canny, J.: TinyMotion: Camera Phone Based Interaction Methods. In: Proc. CHI
2006, pp. 339–344 (2006)

	Pull and Push: Proximity-Aware User Interface for Navigating in 3D Space Using a Handheld Camera
	Introduction
	Framework of the Algorithm
	Corner Points Detecting and Tracking
	Zoom Detecting Algorithms
	Algorithm One: Sensing the Distance
	Algorithm Two: Sensing the Change of the Area
	The Accuracy of the Two Algorithms
	Large Distance Zooming Support

	Applications
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

